Machine Learning Coffee Seminar: Assistant Professor Antti Honkela, University of Helsinki
Weekly seminars held jointly by the Aalto University and the University of Helsinki.
Map © OpenStreetMap. Some rights reserved.
Helsinki region machine learning researchers will start our week by an exciting machine learning talk. The aim is to gather people from different fields of science with interest in machine learning. Porridge and coffee is served at 9:00 and the talk will begin at 9:15. The venue for this talk is seminar room T6, CS building.
Subscribe to the mailing list where seminar topics are announced beforehand.
Differentially Private Bayesian Learning
Antti Honkela
Assistant Professor, University of Helsinki
Abstract:
Many applications of machine learning for example in health care would benefit from methods that can guarantee data subject privacy. Differential privacy has recently emerged as a leading framework for private data analysis. Differenctial privacy guarantees privacy by requiring that the results of an algorithm should not change much even if one data point is changed, thus providing plausible deniability for the data subjects.
In this talk I will present methods for efficient differentially private Bayesian learning. In addition to asymptotic efficiency, we will focus on how to make the methods efficient for moderately-sized data sets. The methods are based on perturbation of sufficient statistics for exponential family models and perturbation of gradients for variational inference. Unlike previous state-of-the-art, our methods can predict drug sensitivity of cancer cell lines using differentially private linear regression with better accuracy than using a very small non-private data set.
See the next talks at the seminar webpage.
Please spread the news and join us for our weekly habit of beginning the week by an interesting machine learning talk!
Welcome!