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Understanding the structural and dynamical properties of water at solid-liquid interfaces 
is essential for unravelling the atomistic details of key steps in electrochemistry, hetero-
geneous catalysis and corrosion. In recent years, in particular ab initio molecular dy-
namics (MD) simulations based on density-functional theory (DFT) have contributed 
significantly to the understanding of these processes. Still, due to their high computa-
tional costs, ab initio MD simulations of water interacting with solid surfaces are re-
stricted to comparably small systems and short simulation times. This limitation can be 
overcome by employing high-dimensional neural network potentials (NNPs) [1], which 
are constructed from a set of electronic structure data and enable carrying out large-
scale simulations with close to first-principles accuracy for a variety of systems.  

In this talk I will first introduce the methodology of high-dimensional NNPs [2-4]. Us-
ing this method, NNPs for liquid water interacting with metal and oxide surfaces using 
copper [5] and zinc oxide [6] as benchmark systems will be presented. First, the con-
vergence of various properties as a function of the supercell size and the thickness of the 
water layer in typical slab approaches will be investigated allowing to assess the relia-
bility of conventional ab initio MD simulations. Then, the influence of copper and zinc 
oxide surfaces on various properties of water will be discussed addressing in particular 
the local water structure and the mechanisms of proton transfer events.  

[1] J. Behler and M. Parrinello, Phys. Rev. Lett., 98, 146401 (2007).
[2] J. Behler, J. Chem. Phys., 134, 074106 (2011).
[3] J. Behler, Int. J. Quant. Chem., 115, 1032 (2015).
[4] J. Behler, Angew. Chem. Int. Ed., 56, 12828 (2017).
[5] S. Kondati Natarajan and J. Behler, Phys. Chem. Chem. Phys., 18, 28704 (2016).
[6] V. Quaranta, M. Hellström and J. Behler, J. Phys. Chem. Lett., 8, 1476 (2017).
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EFFICIENT N-BODY FORCE FIELDS FROM MACHINE LEARNING

C. Zeni1, A. Glielmo1, A. De Vita1,2

1 Department of Physics, King’s College London, United Kingdom
2 Department of Engineering and Architecture, University of Trieste, Italy
email: claudio.zeni@kcl.ac.uk

In the recent years, several approaches to machine learning (ML) force fields (FF) for 
molecular dynamics have been proposed. Ultimately, despite their computational effi-
ciency and promising level of accuracy on DFT reference calculations, these algorithms 
are not presently widespread as one would expect. A possible explanation for this can be 
found in the unintuitive functional form, and overall lower computational speed that these 
ML-FF offer when compared to parametric molecular dynamics FFs.
We present a method that improves our physical intuition of all classes of Gaussian Pro-
cess (GP) ML FF while, most importantly, offering a orders-of-magnitude speed-up to GP
predictions, thanks to a mapping procedure [1] We first introduce a set of GP kernels, offer
physical interpretations of their formalism and systematically benchmark the accu-racy of
our GPs on a set of materials w.r.t. DFT reference force calculations. Afterwards, we
showcase an example use of our in-development M-FF python package, looking at fast
MD simulations of Ni nanoclusters with ab-initio accuracy on timescales of the order of
10 ns [2].
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Figure 1: Computational cost of evaluating the 3-body energy as a function of the 
database size N and the number of atoms M located within the cutoff radius. Left: Pre-
diction time (s) for the energy of a atomic triplet for the 3-body kernel using the GP (blue 
dots and solid line) and the remapped potential (orange dots and solid line), as a function 
of N for for a typical environment ρ including M = 24 atoms.. Right: scaling of the 
same quantities as a function of M for N = 500.

[1] A. Glielmo, C. Zeni, A. De Vita Submitted, (2018).
[2] C. Zeni, K. Rossi, A. Glielmo, N. Gaston, F. Baletto, A. De Vita Submitted, (2018).
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Elucidating the growth mechanism in tetrahedral amorphous carbon with a 
machine-learning based interatomic potential
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Since the early days, there has been a debate in the community as to what physical pro-
cesses are involved in tetrahedral amorphous carbon growth. Because of the impossibility 
to study the atomistic picture of film growth experimentally, many efforts have been made 
during the last 30 years to provide an explanation based on computational simulation. Un-
fortunately, due to the limitations of classical potentials and the cost of ab initio methods, 
these efforts have failed to provide definitive answers. Thus, the commonly accepted 
explanation that the “subplantation” mechanism is behind tetrahedral amorphous carbon 
growth and high sp3 fractions is based on indirect experimental observations and (to some 
degree) speculation.
In this presentation we solve the long-standing challenge of simulating the growth pro-
cess which leads to the high degree of sp3 hybridization observed in dense amorphous 
carbon films. We do so by employing a state-of-the-art machine learning-based inter-
atomic potential and carrying out large scale molecular dynamics simulations where the 
film deposition has been reproduced by studying the effect of atomic impacts one atom at 
a time. Thanks to this detailed and highly accurate simulation, we can elucidate the growth 
mechanism which takes place during deposition of energetic ions and leads to the 
formation of sp3-rich films [1].
The GAP machine-learned potential that we use in this study bridges the gap between 
the speed of classical interatomic potentials and the accuracy of density functional the-
ory [2, 3]. Based on the results we obtain for amorphous carbon with this new simulation 
framework, we challenge the subplantation theory and present compelling evidence that 
tetrahedral amorphous carbon grows predominantly via the “peening” process, whereby 
sp3 carbon is formed away from the impact site of the incident atoms due to pressure 
waves and as a result of a delicate balance between bond creation and annihilation.
While machine-learning approaches applied to physics, chemistry and materials science 
has been a trending topic for some years now, so far most studies have been restricted to 
proof-of-concept and validation work. In this presentation, we use machine learning as 
an extremely powerful tool to solve compelling physical problems and take a quantum 
leap in how atomistic simulations can be used to understand and predict the properties of 
complex materials.

[1] M. A. Caro, V. L. Deringer, J. Koskinen, T. Laurila, and G. Csányi, under review.
[2] A. P. Bartók, M. C. Payne, R. Kondor, and G. Csányi, Phys. Rev. Lett. 104, 136403

(2010).
[3] V. L. Deringer and G. Csányi, Phys. Rev. B 95, 094203 (2017).
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MACHINE LEARNING IN THE CHEMICAL PHYSICS DOMAIN

Bjørk Hammer

Department of Physics and Astronomy, Aarhus University, Denmark
email: hammer@phys.au.dk

A number of search methods based on basin hopping or evolutionary algorithms are rou-
tinely used to identify, e.g. in a density functional theory framework, the most optimal
cluster and surface structures for various inorganic compounds. In this talk, I introduce
simple machine learning models and show how such models, when adopted into the search
methodologies, do accelerate the finding of optimal structures. The machine learning
models include unsupervised and supervised models, such as clustering[1], kernel en-
abled regression methods[2,3], and artificial neural networks[4,5]. Common the methods
is a need for a proper representation of the compound structures and a discussion of dif-
ferent representations is hence taken, in particular with a view at the amount of data being
available.

[1] M. S. Jørgensen, M. N. Groves, and B. Hammer, J. Chem. Theo. Comput. 13, 1486
(2017).

[2] T. L. Jacobsen, M. S. Jørgensen, and B. Hammer, Phys. Rev. Lett. 120, 026102
(2018).

[3] M. S. Jørgensen, U. F. Larsen, K. W. Jacobsen, and B. Hammer, J. Phys. Chem. A
122, 1504 (2018).

[4] E. L. Kolsbjerg, A. A. Peterson, and B. Hammer, Phys. Rev. B, submitted.
[5] X. Chen, M. S. Jørgensen, J. Li, and B. Hammer, J. Chem. Theo. Comput., submitted.
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STRUCTURE PREDICTION OF MAGNETIC TRANSITION METAL OXIDES
BY USING EVOLUTIONARY ALGORITHM AND HYBRID DFT

M.S. Kuklin1 and A. J. Karttunen1

1 Department of Chemistry and Materials Science, Aalto University, Finland
email: mikhail.kuklin@aalto.fi

Crystal structure prediction represents one of the major problems in physical sciences.
Particularly, when some crystal structures can be successfully identified by using cur-
rently known approaches, prediction of transition metal oxides remains to be challenging.
It is due to the complicated electronic structure of transition metal oxides which can be,
however, reliably described by the hybrid DFT: the exact exchange part helps to solve
the problem with overlocalization of metal d-orbital and, consequently, correctly treat the
atomic magnetic moments.

Recently, we interfaced the USPEX code with the CRYSTAL17. It enables efficient use
of the hybrid functionals for the structure predictions by using the Gaussian-type localized
atomic basis sets. USPEX is an effective evolutionary algorithm-based method which
utilizes ab initio codes for local relaxations of the candidates without requirements of
experimental data.
.
For the first time, we show successful structure predictions of several transition metal
oxides (NiO, CoO, and CuO) with correct atomic magnetic moments by using the USPEX
in combination with the CRYSTAL17 code. The hybrid PBE0 functional with 25% Har-
tree-Fock and 75% PBE exchange was utilized with the optimized all-electron, Gaussian-
type basis sets based on Karlsruhe def2 basis sets. For NiO and CoO oxides, minimal unit
cell of 4 atoms requiring to describe antiferromagnetic structures was used. To obtain the
correct magnetic ground state structure of CuO, a unit cell containing 16 atoms is needed.
Otherwise, experimental data was not used in the crystal structure search by taking
advantage of USPEX being a fully non-empirical approach. As a result, crystal structures
and atomic magnetic moments of the studied oxides were found to be in line with
experimental data.

Figure 1: Example of predicted magnetic NiO structure
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EXPLORATION VERSUS EXPLOITATION IN GLOBAL ATOMISTIC STRUC-
TURE OPTIMIZATION

M. S. Jørgensen1, U. F. Larsen1, K. W. Jacobsen2, and B. Hammer1

1 Interdisciplinary Nanoscience Center (iNANO) and Department of Physics and Astron-
omy, Aarhus University, Denmark
2 Center for Atomic-Scale Materials Design (CAMD), Department of Physics, Technical
University of Denmark, Denmark
email: mj@inano.au.dk

The ability to navigate vast energy landscapes of molecules, clusters, and solids is a neces-
sity for discovering novel compounds in computational chemistry and materials science.
For high-dimensional systems, it is only computationally feasible to search a small portion
of the landscape, and hence, the search strategy is of critical importance. By introducing
Bayesian optimization concepts in an evolutionary algorithm framework [1], I will show
how one can quantify the concepts of exploration and exploitation in global minimum
searches. This quantification enables control of the balance between probing unknown
regions of the landscape (exploration) and investigating further regions of the landscape
known to have low-energy structures (exploitation) via a single parameter. The search
for global minima structures proves significantly faster with the optimal balance for three
test systems (molecular compounds) and to a lesser extent also for a crystalline surface
reconstruction. In addition, global search behaviors are analyzed to provide reasonable
grounds for an optimal balance for different problems.

Exploitation Exploration

Search efficiency

Figure 1: The success of an evolutionary global minimum search as a function of the
exploitation/exploration balance.

[1] M. S. Jørgensen, U. F. Larsen, K. W. Jacobsen, and B. Hammer, J. Phys. Chem. A,
122, 1504-1509 (2018).
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MACHINE LEARNING FOR MATERIALS DESIGN

L. Ward1

1 Computation Institute, University of Chicago, USA 
email: loganw@uchicago.edu

Computational methods offer the ability to drastically accelerate the design of materials,
but there are many material properties which lack sufficient theoretical models or com-
putational tools. One route to enable the computational design of more materials is to
employ machine learning to automatically learn models from materials data. In this talk,
we will present general-purpose approaches for creating machine learning models and
demonstrate their application to the design of several materials. Specifically, we will
show a machine learning technique that can link the composition of a material to a diverse
range of properties. We then demonstrate the use of such models to optimize commercial
bulk metallic glass alloys and discover new amorphous metal coatings.

Figure 1: Approach used to design bulk metallic glass alloys with machine
learning. We used data extracted from the materials science literature to build

several machine learning models, which let us quickly identify candidate alloys.
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How does molecular structure influence charge mobility? - Mining a database of
organic semiconductors.

C. Kunkel, C. Schober, J. Margraf, K. Reuter and H. Oberhofer

Chair for Theoretical Chemistry, Technische Universiät München, Lichtenbergstr. 4, D-
85747 Garching, Germany
email: christian.kunkel@tum.de

Improving charge carrier mobilities in organic semiconductors is a challenging task, usu-
ally tackled by structural tuning of a promising compound family, while relying on in-
tuition or experience. Still, the vast chemical space is then only locally explored, while
promising design strategies might also be uncovered from systematic analysis of large
compound databases. We carry out such an analysis by applying charge carrier mobility
simulations and data mining strategies to an inhouse database of > 64.000 organic crys-
tals, obtained from the Cambridge Structural Database (CSD) and screened for charge
transport properties using first principle derived descriptors[1].

The analysis shows, that our screening recovers many known and well performing mate-
rials, while also finding many promising candidates, not yet considered for organic elec-
tronics applications. To further derive design principles from the data, we evaluate the
intrinsic suitability of ≈ 200 molecular scaffolds found to be contained as compound-
clusters in our database. A similarity network analysis hints at already explored regions
of chemical space, while statistical analysis of the clusters uncovers significant expectable
performance differences. Likewise, an evaluation of attached sidegroups reveals signif-
icant tuning potential, demonstrated also in a simple molecular optimization approach.
The discovered trends can therefore be a basis for further in-depth theoretical and exper-
imental design of materials for organic electronics, highlighting the value of data-based
approaches.

[1] C. Schober, K. Reuter and H. Oberhofer, J. Phys. Chem. Lett., 7, 3973 (2016).
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High-throughput Screening of Transparent Conducting Oxides 

Christopher Sutton 
Theory Department, Fritz Haber Institute of the Max Planck Society, Berlin, Germany 

Transparent conducting oxides (TCOs) are crucial for the operation of a variety of 
technological devices such as photovoltaic cells and light-emitting diodes; however, only 
a small number of compounds are currently known to display both transparency and 
conductivity suitable enough to be used as transparent conducting materials. We 
investigate ternary and quaternary alloys of group-III oxides with the formula 
(InxGayAlz)2O3 (where x+y+z=2) as alternative TCOs by screening for stability and key 
computational parameters that define charge mobility. An important consideration in the 
identification of stable crystalline mixtures is that the lowest thermodynamic energy of 
approximately 2N possible configurations has to be examined (for a two-component 
mixture). However, an exhaustive search of a large configurational space becomes 
computationally infeasible at the density functional theory (DFT) level. Instead, 
numerically efficient methods for estimating the stability of new alloys are needed to 
efficiently search (meta)stable configurations. 

To address the need for finding new materials with an ideal target functionality, 
the construction of cluster-expansion-based potentials for many lattice types using a 
sparse-regression machine-learning technique (compressed sensing) will be discussed. 
Combining this approach with the nested sampling algorithm, which is a Bayesian 
Markov chain Monte Carlo method, allows for an examination of the thermodynamics of 
ordering and phase separation in alloys. With a large computational database of group-III 
oxides, an open big-data competition was organized by Novel Materials Discovery 
Repository (NOMAD) and hosted by Kaggle. A summary of the best machine-learning 
models applied for the prediction of both the formation enthalpy (an indication of 
stability) and the bandgap energy (an indication of optical transparency) will be 
discussed.  
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Towards an error-aware analysis of multiscale kinetic models

Sebastian Matera1

1 Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee
9, 14195 Berlin, Germany
email: matera@math.fu-berlin.de

Multiscale modeling has become an important tool in materials research allowing to pre-
dict materials response on basis of microscopic models. A hitherto hardly addressed prob-
lem is the propagation of small scale errors to the targeted simulation result on the coarser
scales. Such small scale errors might results from e.g. assumptions made for coarse grain-
ing or because we can only approximately solve the root model. The questions arise about
what is the accuracy of the multiscale model predictions, which conclusions can still be
drawn from the model and which small scale errors cause the large scale uncertainty.

In the talk, I will address these questions in the context of first principles based chemical
kinetic models using Uncertainty Quantification (UQ) and Global Sensitivity Analysis
(GSA)[1, 2]. It turns out that the errors in the Density Functional Theory derived en-
ergetics can lead to significant uncertainties in the predicted reactivities often spanning
orders of magnitude. However, our analysis also reveals that it is still possible to draw
conclusions on the key atomististic aspects controlling reactivity such as potential rate
determining steps.

Large parts of my talk will focus on the utelization of surrogate modelling strategies,
which we have developed during the last years. The first of these methods extend the well-
known Modified Shepard interpolations by an automatic adjustment of the basis functions
to the properties of original model[3], which allows to tackle models with rapid changes in
the parameter response. The second is locally and dimension adaptive sparse grids (ASG),
which overcome the curse of dimensionality to a large extend and which adaptively choose
for which of the input parameters the original model needs to be evaluated[2]. Addition-
ally, I will discuss the extension of the ASG to a multi-level strategy for stochastic models
- such as kinetic Monte Carlo or Molecular Dynamics - allowing a reduction of the overall
sampling effort by orders of magnitude.

[1] S. Döpking, S. Matera Chemical Physics Letters, 674, 28-32 (2017).
[2] S. Döpking, C.P. Plaisance, D. Strobusch, K. Reuter, Ch. Scheurer, S. Matera The

Journal of Chemical Physics, 148, 034102 (2018)
[3] J. M. Lorenzi, T. Stecher, K. Reuter, S. Matera The Journal of Chemical Physics, 147,

164106 (2017)
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Accelerating the Study on Nanocluster Catalysts with the Smooth Overlap of Atomic
Positions(SOAP) Descriptor

Eiaki V. Morooka1

1 Department of Applied Physics, Aalto University , Finland
email: eiaki.morooka@aalto.fi

Platinum Group Metals (PGMs) are heavily used for catalysts that can withstand high
acidic environments such as for fuel cells[1], however; there is a limited amount of supply
[2]. We are studying characteristics of catalysts of nanoclusters using (ML) methods to
automate the procedure of substituting expensive catalysts by rationally designing them
with earth-abundant materials. We do so by eliminating redundant quantum mechanical
calculations, classifying surface structures and interpolating adsorbation energy using a
state-of-the-art ML descriptor called Smooth Overlap of Atomic Positions (SOAP) [3].

Figure 1: Relaxed Au40Cu40 nanocluster with surface hydrogens that were selected
uniquely with the SOAP measure differences.

[1] European Commision. Report on Critical Raw Materials for the EU, Ad hoc Working
Group on defining critical raw materials. Technical report, (2014).

[2] https://newscientist.com/data/images/archive/2605/
26051202.jpg

[3] Albert P. Bartók, Risi Kondor, and G. Csányi. On representing chemical environ-
ments. Physical Review B - Condensed Matter and Materials Physics, 87(18):1-
19(2013).
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MACHINE LEARNING OF MOLECULAR ORBITAL ENERGIES

A. Stuke1, L. Xie2, M. Todorović1 and P. Rinke1

1 Department of Applied Physics, Aalto University, Espoo, Finland
2 Department of Computer Science, Hunter College and the City University of New York,
New York City, USA
email: annika.stuke@aalto.fi

The capacity to efficiently design new and advanced optoelectronic materials is hampered
by the lack of suitable methods to rapidly and accurately identify yet-to-be-synthesized
materials that meet a desired application. To overcome such design challenges, we present
a machine learning model based on kernel ridge regression (KRR) that can predict spec-
tral properties of thousands of organic molecules using two different types of molecular
representation: the Coulomb matrix [1] and the many-body tensor representation [2]. The
model is trained on energies of the highest occupied molecular orbital (HOMO), pre-
computed with density functional theory for three different datasets that consist of 44k,
64k and 134k molecules [3,4,5].

After training, the resulting KRR model successfully predicts HOMO energies of out-of-
sample molecules at negligible computational cost. We find that the predictive accuracy
of KRR greatly depends on the choice of molecular representation, with the many-body
tensor representation performing superior to the Coulomb matrix for all three datasets
in predicting HOMO energies. Moreover, we show that for large datasets, an equivalent
prediction quality can be achieved by training on small, structurally diverse subsets that
well represent the chemical space as covered by the original dataset while being only a
fraction of its size.

[1] M. Rupp, A. Tkatchenko, K.-R. Müller and O. A. von Lilienfeld, Phys. Rev. Lett.,
108, 058301 (2012).

[2] H. Huo and M. Rupp, https://arxiv.org/abs/1704.06439 (2017).
[3] M. Ropo, M. Schneider, C. Baldauf and V. Blum, Sci. Data, 3 (2016).
[4] C. R. Groom, I. J. Bruno, M. P. Lightfoot and S. C. Ward, Acta Cryst., B72, 171-179

(2016).
[5] R. Ramakrishnan, P. O. Dral, M. Rupp and O. A. von Lilienfeld, Sci. Data., 1 (2014).
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Using Machine-Learning to Create Predictive Material Property Models and Accelerate 

Combinatorial Searches

Chris Wolverton

Dept. of Materials Science and Eng., Northwestern University, Evanston, IL (USA)

Rational, data-driven materials discovery has the potential to make research and development

efforts far faster and cheaper. In such a paradigm, computer models trained to find patterns in

massive chemical datasets would rapidly scan compositions and systematically identify attractive

candidates.  Here, we present several examples of our work on developing machine learning

(ML) methods capable of creating predictive models using a diverse range of materials data. As

input  training  data,  we  demonstrate  ML  on  both  large  computational  datasets  of  DFT

calculations,  as implemented in the Open Quantum Materials  Database (oqmd.org),  and also

experimental  databases  of  materials  properties.   We construct  ML models  using a  large and

chemically diverse list of attributes, which we demonstrate can be used as an effective tool to

automatically learn intuitive design rules, predict diverse properties of crystalline and amorphous

materials, such as formation energy, specific volume, band gap energy, and glass-forming ability,

and accelerate combinatorial searches.
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Machine Learning for Molecular Materials: Stability, Properties and Experimental 

Observables

Felix Musil1, Sandip De1,  Federico M. Paruzzo2, Albert Hofstetter2, Yang Jack3, Joshua E. 
Campbell3, Graeme M. Day3, Lyndon Emsley2, Michele Ceriotti1.
1. Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL),
1015 Lausanne, Switzerland.
2. Institut des Sciences et Génie Matériaux, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015
Lausanne, Switzerland.
3. School of Chemistry, University of Southampton, Highfield, Southampton, UK.

Molecular crystals play an important role in several fields of science and technology. 

They frequently crystallize in different polymorphs with substantially different 

physical properties. To understand their structures, machine-learning (ML) methods 

have recently emerged as a way to overcome the need for expensive explicit high 

accuracy first-principle calculations. We show how a recently-developed ML 

framework [1] can be used to achieve sub-kJmol accuracy in the prediction of DFT 

lattice energies of pentacene and two azapentacene isomers [2], using only a few 

hundred reference configurations and provide a data-driven classification that is less 

biased and more flexible than typical heuristic rules.

At the same time, the elucidation of the structure of synthesized molecular crystals 

often requires theoretical inputs to interpret NMR spectra. We use a ML method 

based on local environments to accurately predict chemical shifts of different 

molecular solids and of different polymorphs within DFT accuracy [3], RMSE of 0.49 
ppm (1H), 4.5ppm (13C), 13.3 ppm (14N), and 17.7 ppm (17O), and we demonstrate

that the trained model is able to correctly determine structures of cocaine and the 

drug 4-[4-(2-adamantylcar- bamoyl)-5-tert-butylpyrazol-1-yl]benzoic acid in a chemical 

shift based NMR crystallography approach.

[1]1] De, S., Bartok, A. P., Csanyi, G., & Ceriotti, M. (2016). Phys. Chem. Ch
Phys., 18(20), 13754.
[2]2] Musil, F., De, S., Yang, J., Campbell, J. E., Day, G. M. & Ceriotti, M. (201
Chem. Sci. 9, 1289–1300.

[3] Federico M. Paruzzo, Albert Hofstetter, Félix Musil, De Sandip, Michele Ceriotti,
and Lyndon Emsley. Chemical Shifts in Molecular Solids by Machine Learning
(submited).
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A statistical learning approach to predict martensite start 
temperature and martensite fraction in steels 

Moshiour Rahaman1, Wangzhong Mu1, 2, Joakim Odqvist2, 1 and Peter Hedström2, 1 
1HiMat Engineering AB, SE-131 60 Nacka, Sweden 

2Dept. Materials Science and Engineering, KTH Royal Institute of Technology, 

 SE-100 44 Stockholm, Sweden 
email: moshiour.rahaman@himat.se

The martensite start temperature (Ms) and the amount of athermal martensite formed 
at certain temperatures are important parameters when designing high-
performance steels and their heat treatments. It has therefore attracted significant 
interest over the years with the application of numerous techniques to model the 
Ms. For example, thermodynamics-based, linear regression and artificial neural 
network (ANN)1,2,3 models have been proposed to predict the Ms temperature. 
Recently, however, statistical learning (SL) techniques have made significant 
progress and the availability of open materials data motivates a new attempt at data-
driven predictions of the Ms and the fraction of athermal martensite in steels. We 
report on the development of a SL software tool to predict the Ms temperature and 
the athermal martensite fraction in steels. Furthermore, we make a systematic 
comparison between ensemble learners4,5 of SL techniques and ANN.  

References 

1. Bhadeshia, H.K.D.H. Neural Networks in Materials Science, ISIJ International,
(39)10: 966-979(1999).

2. T. Sourmail and C. Garcia-Mateo. Critical assessment of mod-els for predicting
the Ms temperature of steels. Computational Materials Science, 34, 323-334 (2005)
3. Yu, Z.W. Artificial Neural Networks in Material Science Application, Applied
Mechanics and Materials, (20)23 1211-1216 (2010).
4. L. Breiman, Bagging Predictors, Machine Learning, 24, 123-140 (1996)
5. L. Breiman, Random Forests, Machine Learning, 45, 5-32 (2001)
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Insightful crystal-structure classification using deep learning

Angelo Ziletti1, Matthias Scheffler1, and Luca M. Ghiringhelli1

1Fritz Haber Institute of the Max Planck Society, Berlin, Germany
ziletti@fhi-berlin.mpg.de

Big data is emerging as a new paradigm in materials science. A vast amount 
of three-dimensional structural data is provided by both computational repos-
itories (e.g. http://nomad-coe.eu) and experiments (e.g. atom probe tomogra-
phy). Computational methods that automatically and efficiently detect long-
range order are of paramount importance for materials characterization and 
analytics. Current methods are either not stable with respect to defects, or 
base their representation on local atomic neighbourhoods, which in turn makes 
it difficult to detect “average” longe-range order. 

In the proposed approach, for a given crystal structure we first calculate its di
raction pattern, expand it on spherical harmonics, and then use a neural-network 
model to obtain a compact, low-dimensional representation. We apply this 
workflow to a subset of mate-rials from the Novel Materials Discovery 
(NOMAD) Archive, and show that our deep-learning-based approach compactly 
encodes structural information, is robust to defects (e.g. point defects, and/or 
strain), and allows to build easily interpretable structural-similarity maps. This 
work received funding from the NOMAD Laboratory, a European Center of 
Excellence.

16



HOW MANY MATERIALS ARE LEFT TO DISCOVER?
AN EXPLORATION OF QUATERNARY SPACE

M. Sluydts1,2, M. Larmuseau1,2, T. Crepain1, K. Dumon1, K. Lejaeghere1,3 and S. Cottenier1,2

1 Center for Molecular Modeling, Ghent University, Belgium
2 Department of Electrical Energy, Metals, Mechanical Constructions & Systems, Ghent
University, Belgium
3 Department of Applied Physics, Ghent University, Belgium
email: michael.sluydts@ugent.be

The frontier of materials science is shifting evermore towards the development of ‘exotic’
functional materials, which display an unfamiliar combination of properties. The under-
lying behavior giving rise to these materials’ properties is often too complex to predict
purely from their crystal structure. New exotic materials are thus largely developed by
mimicking existing materials, inevitably introducing bias.

While truly new exotic materials are likely to exist in unknown regions of materials space,
it is unlikely we will find them through biased exploration. At the same time, random
exploration is unsustainable given the time required to synthesize and characterize new
materials. Several questions thus arise. How can we explore the vast materials space
intelligently, yet without bias? And perhaps most importantly: how many materials are
left to discover?

We investigate this fundamental question by creating a database of hypothetical crys-
tals in quaternary space, where experimental exploration is limited. By employing high-
throughput ab initio methods, we are able to predict various properties of these unknown
materials, including their stability. Furthermore, applying machine learning during the
screening procedure yields a ten-fold speedup over brute-force exploration. This yields a
relatively unbiased, yet fast exploration method.

By comparing the discovery rate, composition and structure of the new materials with
that of experimentally known quaternary phases, an estimation can be made of how many
materials are yet to be discovered within this region of materials space.
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High-throughput structural classification of atomistic system

L. Himanen1, P. Rinke1 and A. S. Foster1,2,3
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Projects such as the Materials Genome Initiative[1] and the Novel Materials Discov-
ery Laboratory [2] produce large materials databases containing information extracted
from atomistic simulations, e.g., system geometries and methodology. Often database
users would like to search these databases for specific structural classes such as crys-
tals, molecules, surfaces or 2D-materials. To facilitate such searches, the database en-
tries should be tagged according to a classification system. Unfortunately these structural
classifications are not always provided. To cope with large heterogeneous datasets from
atomistic calculations, automated and verifiable methods for classifying atomistic struc-
tures are becoming necessary.

We introduce a general structure classification concept that can be systematically used
for all structural types. We also discuss how the materials genealogy can be intuitively
mapped to produce a materials “tree of life”. We then discuss our implementation for the
automatic and accurate classification of two-dimensional structures, including surfaces
and 2D-materials, that requires no explicit search patterns.

Figure 1: An illustration of the main features of our automatic structural classification
scheme for two-dimensional materials. Given an atomic structure, it is placed on the
materials genealogy and the bulk unit cell is detected together with outlier atoms, such as
adsorbates.

[1] Materials Genome Initiative, https://www.mgi.gov/.
[2] The Novel Materials Discovery (NOMAD) Laboratory, https://nomad-coe.eu/.
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FROM MACHINE-LEARNING POTENTIALS TO MATERIALS CHEMISTRY 

V. L. Deringer1,2 and G. Csányi1 

1 Department of Engineering, University of Cambridge, UK 
2 Department of Chemistry, University of Cambridge, UK 
email: vld24@cam.ac.uk 

Machine-learning based interatomic potentials find increasing application in materials 
modelling due to their accuracy and attractive computational cost. On this poster, I will 
describe two recent developments that make use of the Gaussian Approximation Potential 
(GAP) framework [1] and specifically address questions in chemistry. First, having pre-
viously shown that GAPs can be used for crystal-structure searching [2], we now devel-
oped a more general protocol for fitting GAPs and concomitantly exploring structural 
space “from scratch”; this will be exemplified for the different allotropes of boron [3]. 
Second, we developed a strategy for fitting GAPs for guest atoms in host structures, ex-
emplifying our approach for Li intercalation in carbon [4]. Our results hint towards the 
usefulness of GAPs and other machine-learning-based potentials in materials chemistry. 

[1] A. P. Bartók, M. C. Payne, R. Kondor, and G. Csányi, Phys. Rev. Lett., 104, 136403
(2010).

[2] V. L. Deringer, G. Csányi, and D. M. Proserpio, ChemPhysChem, 18, 873 (2017).

[3] V. L. Deringer, C. J. Pickard, and G. Csányi, https://arxiv.org/abs/1710.10475.

[4] S. Fujikake, V. L. Deringer, T. H. Lee, M. Krynski, S. R. Elliott, and G. Csányi, J.
Chem. Phys., in press (preprint at https://arxiv.org/abs/1712.04472).
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NEURAL NETWORKS TO SIMULATE DYNAMICS 
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In our group we are looking at the reaction of a cyanide radical with squalane chains to 
study hydrogen abstractions. This reaction is interesting from an atmospheric chemistry 
point of view, because it represents a reaction at a gas-liquid interface. We want to simu-
late the dynamics of this reaction, but because of the electronic structure of the cyanide 
radical, high level quantum calculations are needed to obtain accurate forces and energies. 
This is impractical, as they require considerable computational resources. Consequently, 
we aim to use a neural network to fit the potential energy surface for this system and then 
use it to predict the forces in a molecular dynamics simulation. This should give forces 
and energies that have the accuracy of the high level quantum calculations at the speed of 
classical force fields. 
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Systematically identifying the best chemical representation for machine learning,
with applications in crystal structure prediction

D. McDonagh1 , C. -K. Skylaris1, G. M. Day1

1 Department of Chemistry, University of Southampton, United Kingdom
email: dm1m15@soton.ac.uk

The ability of machine learning models to predict energy calculations, or energy correc-
tions between two levels of theory, has been demonstrated for a number of systems in
the literature. A key component of this is the representation or descriptor of the system,
of which there are now many. Comparisons between descriptors are lacking, and are
typically carried out by using different descriptors for a given model and observing the
outcome. It would be useful to have an approach to comparing descriptors that is inde-
pendent of the machine learning model used. Current rules of thumb for a good descriptor
include that the descriptor must be invariant to permutation, unique, locally constant, and
preferably small to reduce the effects of the curse dimensionality. The first of these can
generally be shown a priori, but measuring the remaining properties can be difficult in
practice.

Here we describe a simple metric for quantifying the effectiveness of a given descriptor,
in terms of its uniqueness and local constancy, allowing for the best descriptor for a given
dataset to be identified. Any hyperparameters of a descriptor can also then be optimised
for these conditions, before any machine learning takes place. We demonstrate this in the
field of crystal structure prediction, where thousands of lattice energy calculations at a
high level of theory are often required. By systematically identifying the best descriptor
and then selecting a training set that best represents the space, we find sub kJ/mol pre-
diction errors in correcting force field lattice energies to density functional theory with a
range of machine learning models, using training set fractions as low as 10%.
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Study of novel 2D structures with Siesta and AiiDA 

Vladimir Dikan, Alberto García, Victor M. García-Suárez, Emanuele Bosoni, Pablo Ordejón 

An interface between the DFT code Siesta [1] and the Automated Interactive Infrastructure and 
Database for Computational Science (AiiDA) [2] is presented. The interface allows to 
easily design Siesta calculations, submit them to local or remote computers and analyse the 
results. It includes the calculation of forces, stresses and band structures and also geometry 
relaxations. The Siesta-AiiDA infrastructure is designed to create workflows that can easily 
automate the design of simulations, the extraction of parameters and the generation of large 
amounts of data. An example of workflow that can be used to design new 2D structures is 
presented. 

[1] J. M. Soler, E. Artacho, J. Gale, A. García, J. Junquera, P. Ordejón, and D. S. Portal, J. 
Phys.: Condens. Matter 14, 2745 (2002).

[2] G. Pizzi, A. Cepellotti, R. Sabatini, N. Marzari, and B. Kozinsky, Comp. Mat. Sci. 111, 218
(2016). 
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Machine Learning Structural Descriptors on Nanocluster Catalysts

 Email: marc.jager@aalto.fi

Marc Jäger1, Eiaki Morooka1 , and Adam Foster1,2 
— 1 Aalto University, Helsinki, Finland
— 2 Kanazawa University, Japan

Scientists have advanced significantly in producing nanoparticles with defined composition, size 
and morphology in the last decade. Due to this and because of their remarkable properties, 
nanoclusters have gained attention in heterogeneous catalysis. Nanoclusters differ from bulk metal 
behaviour, their catalytic properties are sensitive to changes in size and morphology. Nanoparticles 
like molybdenum disulfide are known to catalyze the hydrogen evolution reaction (HER). The 
combinatorial and structural space of nanoclusters is vast, so extensive modelling is difficult. 
Structural descriptors are used to describe the geometry of an adsorption site and to predict 
properties which indicate a high catalytic activity, in particular the hydrogen adsorption free energy. 
We analysed the performance of state-of-the-art structural descriptors (SOAP, MBTR and ACSF). 
Simulations can provide energetic and kinetic analysis of HER using DFT. The vast amount of 
possible nanoclusters, all potential candidates for catalysing the HER, requires reduction and 
interpolation of DFT calculations. This is tackled by merging the combinatorial space with the 
chemical compound space and applying machine learning on diverse datasets.
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Global Search on a Machine Learned Energy Surface

Henrik Lund Mortensen1
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We search a machine learned energy surface to find the global minimum structure of
various chemical systems. Although machine learning regression techniques are superb
at interpolating between samples (obtained with DFT calculations) they often fail to be
accurate when extrapolating beyond the sampled region. However, useful information
can be extracted from features (such as local minima) in the extrapolation region. This
information reveals interesting parts of the configuration space which are not yet sampled.
The low cost of evaluating the machine learned potential allows us to greedily search the
configuration space, and thereby quickly locating the regions of interest, which potentially
contains the global minimum of the true, underlying potential energy surface.
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Machine learning enhanced Monte Carlo optimization of carbon structures

S. A. Meldgaard1, Esben L. Kolsbjerg1,2, and B. Hammer1,2

1 Department of Physics and Astronomy, Aarhus University, Denmark
2 Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Denmark
email: sm@phys.au.dk

A geometric optimization of a 19 atom two-dimensional Lennard-Jones structure is per-
formed using machine learning techniques to enhance the underlying Monte Carlo frame-
work. By clustering local feature vectors a global feature vector is constructed and sub-
sequently used for producing local energies by the use of ridge regression. The local
energies are used to improve upon the traditionally stochastic choice of atoms to rattle in
the Monte Carlo step. The method is then applied to a three-dimensional quantum system
in the form of 24 carbon atoms. For both Lennard-Jones structures and the Carbon system
an earlier optimization success is observed.

... ... ...

Figure 1: Sample of structures observed during a carbon optimization run, colored by
predicted local energies.

[1] Meldgaard et al., in manuscript
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Department of Materials Engineering, Ben Gurion University of the Negev, Beer-Sheva 
84105, Israel 
email: oreneya@post.bgu.ac.il 

In materials science, atomic scale problems are often investigated computationally by 
means of molecular dynamics simulations. These require the knowledge of interatomic 
interaction forces of the material in question. The classical models are constrained by 
physical approximations and thus have limited capabilities in terms of accuracy as com-
pared with ab-initio calculations and experiments. Machine learning models, on the other 
hand, by their nature have the potential to fit any physical form that characterizing the 
relevant material system. In the present work we use density functional theory derived 
data of liquid rubidium to fit an interatomic potential model. In particular, we explore the 
space of hyperparameters that control fully connected neural networks and 3D convolu-
tional neural networks. 
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DEEP LEARNING REPRESENTATIONS OF MICROSTRUCTURES

M. Larmuseau1,2,3, M. Sluydts1,2, T. Dhaene3 and S. Cottenier1,2

1 Center for Molecular modeling, Ghent University, Belgium
2 Electrical Energy, Metals, Mechanical Constructions and Systems, Ghent University,
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email: michiel.larmuseau@ugent.be

For decades, metallurgists have relied on intuitive physical features of the microstructures
such as the grain size to establish a quantitative link with the properties of the material.
However, for complex, multiphase steels features such as the grain size cannot always be
discerned and hence these traditional methods fall short. In order to analyse these types
of microstructures, methods from computer vision have been successfully applied as an
alternative. Different methods have been applied by different authors for the classification
of distinct classes of steel, but a benchmark of these techniques on a common dataset is
currently missing, to the best of our knowledge. We provide a benchmark of these fea-
tures on a dataset of more than thousand optical microscopy images with more than 60
different classes of steel.

Inspired by the surge of deep learning in many scientific fields, we investigate the po-
tential of deep learning in extract relevant features from microstructures. To this end, a
supervised technique called "Siamese Networks" is used. This method allows to represent
each microstructure in a low dimensional space where the distance between microstruc-
ture belonging to the same class is minimized.
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SUPPORT VECTOR MACHINE AND GAUSSIAN PROCESS AIDED AB INI-
TIO PREDICTIONS: CLASSIFYING ULTRA-HIGH TEMPERATURE FREN-
KEL PAIRSA AND PREDICTING PHASE TRANSITION ENTROPYB 

T.A. Mellan1,A,B and M.W. Finnis2,A 
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rials, Imperial College London, UK 
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Density functional theory (DFT) has become ubiquitous in the prediction of solid state 
properties. Despite advances in high-performance computing (HPC) and code develop-
ment, using DFT to compute anharmonic vibrations for transport or free energy predic-
tions requires considerable computing resources. We illustrate two machine learning 
aided approaches that are useful in this regard: 
A) A support vector machine (SVM) is used to classify intrinsic defects in a DFT molec-

ular dynamics simulation of an ultra-high temperature ceramic near the melting-point
(T = 3800 K). The concentration of different defect types identified by the classifier
is useful for estimating the anharmonic free energy contributions associated with the
intrinsic defects near the melting point.

B) Gaussian process regression (GPR) is used to interpolate the Brillouin zone of a soft
phonon mode based on limited experimental data points. Combined with harmonic
DFT calculations, a good approximation to the temperature-renormalized phonon dis-
persion is computed, enabling the prediction of phase transition thermodynamics at
minimal (harmonic level) computational cost.

Figure 1: Evolution of the 
carbon-carbon pair correla-
tion function over 200 fs of 
MD in a ZrC crystal at 3200 
K. The data encodes Frenkel
pair formation and is used to
train a support vector ma-
chine (SVM).
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COMPETITIVE FORMATION OF HYDROGEN PEROXIDE AND WATER ON 

PALLADIUM(111): INSIGHTS FROM DENSITY FUNCTIONAL THEORY 

AND ARTIFICIAL NEURAL NETWORKS. 
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Palladium-based catalysts are useful in many industrial processes, like the hydrogen 

peroxide synthesis. This process can be modeled by theoretical methods such as Density 

Functional Theory (DFT), which is a powerful tool to rationalize the development of 

new catalysts along with experimental procedures. However, DFT calculations comes 

with a high computational cost.[1]  

Here, we implemented an Artificial Neural Network (ANN) that predicts the reaction 

barriers obtained through DFT. The chosen reaction network is the hydrogen peroxide 

synthesis, including the competing paths of the water formation. The active surface is 

Palladium (111), which is represented as an hexagonal lattice.  

The ANN was trained with several parameters, including reactants on the surface, prod-

ucts markers, cell area, the energy of the clean surface, the number of electrons involved 

in each reaction, and the reactant coordinates on the cell.[2-4] The logistic function has 

been used as Neurons response, thus assuring smooth variations until convergence.[5-7] 

The reaction barriers obtained from the ANN are in good agreement to those computed 

with DFT, Figure 1. Since our database is expandable, it is possible to include results 

from other systems to improve the robustness and accuracy of this tool. 

Figure 1. Reaction barriers obtained through ANN and DFT. Yellow (red) dots corre-

sponds to the training (validation) set. 

[1] N. López et al., Catal. Sci. Technol., 2012, 2, 2405–2417.

[2] J. Behller and M. Parrinello, Phys. Rev. Lett., 2007,  98, 146401.

[3] T. Derek, Science,  2018, 36, 8075.

[4] P. Raccuglia et al., Nature, 2016, 533, 73–76.

[5] N. Castin and L. Malerba, J. Chem. Phys., 2010, 132, 074507.

[6] J. S. Smith et al., Chem. Sci., 2017, 8, 3192–3203.

[7] F. Pascal et al., Sci. Rep., 2018, 8, 2559.
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The rational design of new heterogeneous catalysts relies on the efficient survey of reac-

tion networks by Density Functional Theory, DFT. However, massive reaction networks 

as those involved in the conversion of biomass cannot be sampled efficiently as they 

involve more than 10
4
 intermediates even for a typical C6 sugar.[1–2] Here we present a

statistical analysis applied on the thermochemical data of 71 C1–C2 molecular fragments 

on 12 metal surfaces. The two main sources of thermochemical variability can be traced 

back to the d-band center and the oxidation potential. The robustness of the methodolo-

gy was tested for a lower number of molecular descriptors. The full thermochemistry of 

a metal surface can be retrieved with mean absolute errors (MAE) between 0.08 and 

0.12 eV.[3] 

Figure 1. Parity plot of potential energies for C1-C2 intermediates on 12 metal surfaces. 

[1] R. García-Muelas, Q. Li, and N. López. ACS Catal. 2015, 5, 1027--1036.

[2] Q. Li, R. García-Muelas, and N. López. Nat. Comm. 2018, 9, 526.

[3] R. García-Muelas and N. López. Submitted, 2018.
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PREDICTING THE CURIE TEMPERATURE USING MACHINE LEARNING
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When a ferromagnet is heated above the Curie Temperature (TC), its spontaneous magne-
tization abbruptly falls to zero. For most practical applications involving ferromagnets a
high TC is required. However, at the moment there are a limited number of such magnets,
thus any progress on speeding up the rate of discovery would be extremely valuable.

In this work we present our efforts at using Machine Learning to predict the TC using
solely the chemical formula of a material. The model was trained using 1500 experimental
measurements of the TC for different ferromagnets. On an independent test set consisting
of 800 compounds the mean absolute prediction error was 65 K.

(a) (b)

Figure 1: (a) The predictions on the TC Test Set with R2 = 0.85. (b) A plot showing how
the predicted TC varies with the fraction of Cobalt for the system Mn–Co.
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In atomistic structure search it is often important to minimize the system’s multidimen-
sional potential energy surface (PES). Machine learning methods help to reduce the num-
ber of computationally costly static simulations needed for the task. We used Bayesian
optimization on top of Gaussian process (GP) models [1] interfaced with atomistic sim-
ulation codes (BOSS method [2]) to find conformers of alanine dipeptide molecule. We
studied the scaling of the efficiency of finding the global minimum structure when dimen-
sion of the PES is increased. We discovered an improvement in the scaling behaviour as
gradient information of the PES function (forces) is added to the GP model [3].

Figure 1: Average number of required acquisitions for global minimum convergence per
dimension for non-gradient GP model and gradient-assisted model as found on dihedral
angles of the alanine dipeptide molecule.

[1] C. E. Rasmussen and C. Williams, Gaussian Processes for Machine Learning, The
MIT Press, Cambridge, MA, USA (2006).

[2] M. Todorović, M. U. Gutmann, J. Corander and P. Rinke, arXiv:1708.09274, [cond-
mat.mtrl-sci] (2017).

[3] E. Solak, R. Murray-Smith, W. E. Leithead, D. J. Leith and C. E. Rasmussen, Deriva-
tive observations in Gaussian process models of dynamic systems. Advances in Neu-
ral Information Processing Systems 25, pp. 1057-1064 (2003).
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