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interconnected world

• networks model objects and their relations

• many different network types

– social

– informational

– technological

– biological

– . . .
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Figure 2: Discovered strong edges of 5 ego-networks of KDD innovation award winners. The �rst 5 �gures contain
only strong edges: the colored edges and vertices show 5 topics that were used as input: cluster, classif, pattern,
network, distribut. The last topic consisted of 2 connected components which we used as two separated communities.
The last �gure shows strong and weak edges. Some of the vertices do no belong to any of the communities. Some
edges are strong despite not belonging to any of the communities because we keep edges that do not induce violations.
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transforming our society

• online communication networks and
social media

• profound implications in

– knowledge creation

– information sharing

– education

– democracy

– society as a whole

O. Kostakis et al.
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Fig. 9 Linear layouts of 5 summaries discovered for the Twitter World Cup dataset, for k = 38 and h = 2.
The plotted graphs contain only those vertices with degree greater or equal to the 50th largest degree value
of each graph. Blue edges are unique to a summary, red edges occur in each summary, and the remaining
edges are colored green (Color figure online)

notice that the hashtags in the sumamries form communities. For example, those for
football (soccer) are separated from those of American football. Similarly, there is a
cluster of hashtags relating to music bands, that also happens to re-appear.
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research questions

• structure discovery

– finding communities, events, roles of individuals

• study complex dynamic phenomena

– evolution, information diffusion, opinion formation

• develop novel applications

• design efficient algorithms



some research projects presented today

• polarization in social networks

[Kiran Garimella, Antonis Matakos]

– can we identify / measure polarized discussions?

– can we reduce / moderate polarization?

• AncestryAI [Eric Malmi]

– reconstruct family trees by linking historical records

– analyze the resulting family trees

• semantic homophily in online communication

[Sanja Šćepanović]

– how to measure homophily in social networks?



networks over time

traditional view

• networks represented as pure graph-theory objects

– no additional vertex / edge information

• emphasis on static networks

• dynamic settings model structural changes

– vertex / edge additions / deletions



networks over time

modern view

• ability to collect and store large volumes of network data

• available data have fine granularity

• network topology is relatively stable, while
lots of activity and interaction is taking place

• giving rise to new concepts, new problems, and
new computational challenges



modeling activity in networks

1. network nodes perform actions (e.g., posting messages)
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2. network nodes interact with each other
(e.g., a “like”, a repost, or sending a message to each other)

time

x
y

z
w

u



many novel and interesting concepts
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mining temporal networks

• many new interesting problems [Polina Rozenshtein]

• e.g., tracking important nodes

– maintaining neighborhood profiles

– temporal PageRank



maintaining neighborhood profiles

• problem: for all nodes in the network, track the number
of neighbors at distance d

• exact solution requires all-pairs shortest path computation

– non scalable

• resort to approximations based on diffusion methods

– approximate memory-efficient streaming algorithm



empirical evaluation — running time 0
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(d) DBLP

Fig. 4. Time needed to process 1 000 edges for di↵erent `
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Fig. 5. Running times for DBLP with parallelized version of the algorithm.

8 Concluding remarks

We studied the problem of maintaining the neighborhood profile of the nodes
of an interaction network—a graph with a sequence of interactions, in the form
of a stream of time-stamped edges. The model is appropriate for many modern
graph datasets, like social networks where interaction between users is one of the
most important aspects. We focused on the sliding-window data-stream model,
which allows to forget past interactions and adapt to new drifts in the data.
Thus, the proposed problem and approach can be applied to monitoring large
networks with fast-evolving interactions, and used to reason how the network
structure and the centrality of the important nodes change over time.

performance on DBLP dataset

– offline HyperANF : 3.6 sec / sliding window

– proposed approach : 0.003 sec / sliding window



PageRank

• classic approach for measuring node importance

• listed in the top-10 most important data-mining algorithms
[Wu et al., 2008]

• numerous applications

– ranking web pages
– trust and distrust computation
– finding experts in social networks
– . . .



research questions and objectives

• extend PageRank to incorporate temporal information
and network dynamics

• adapt PageRank to reflect changes in network dynamics
and node importance

• estimate importance of a node u at any given time t

• our solution: new temporal PageRank model
efficient streaming algorithm



research questions and objectives

• extend PageRank to incorporate temporal information
and network dynamics

• adapt PageRank to reflect changes in network dynamics
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• our solution: new temporal PageRank model
efficient streaming algorithm



summary

• examples of mining temporal networks

– maintaining sliding-window neighborhood profiles

– temporal PageRank

• potential for new concepts, new problem definitions,
new computational methods, and new applications
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