The Science of Software
(a.k.a. Formal Methods)

Stavros Tripakis
Aalto University



What is science?

science => predictions

—
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What is the science of software?

 What predictions can we make about the programs
we write?

e Can | predict that my program will:
* Terminate?

Never throw an exception?

Produce the right result?

Always?

Sometimes?




software science # computing science

software science & computer science



What is the mathematics of the
science of software?

* Language
* Truth




Formal (mechanized) logic and proof

— specification and verification
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Hoare (invariant As_init w M (AAs. Suc 0 < length As))
[:As~As'.IBs. Suc 0 < length Bs A (3Cs. perm As (Bs @ Cs) A As'

apply (rule hoare_demonic, safe)

apply (simp add: Sup_less_def)

apply (rule_tac x = "invariant As_init (Suc (length Cs))" in exI, safe)
apply (rule_tac x = "(Suc (length Cs))" in exI, simp_all)

apply (simp add: invariant_def, safe)
by (drule perm_length, simp)

lemma [simpl: "io_distinct As_init = Suc 0 < length As_init —
Hoare (invariant As_init w M (Ms. Suc 0 < length As))
[:As~+As'.JA B Bs. perm As (A # B # Bs) A As' = FB (FB A ;; FB B) # Bs:] (Sup_less (invari
(rule hoare_demonic, safe)
(simp add: Sup_less_def)
(rule_tac x = "invariant As_init (Suc (length Bs))" in exI, safe)
(rule_tac x = "(Suc (length Bs))" in exI, simp_all)
(simp add: invariant_def, safe)
(drule perm_length, simp)

apply
apply
apply
apply
apply
apply
done

theorem CorrectnessTranslateHBD: "io_distinct As_init =— 1length As_init > 1 —
Hoare (io_distinct M (A As . As = As_init)) TranslateHBD () S .
apply (simp add: TranslateHBD_def)
apply (simp add: hoare sedquential)
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Examples

# src/HOL/ex/Seq.thy

# src/HOL/ex/ML.thy

# src/HOL/Unix/Unix.thy

# src/HOL/Isar_Examples/Drinker.thy
# src/Tools/SML/Examples.thy
Release notes

# ANNOUNCE

# README

® NEWS

# COPYRIGHT

# CONTRIBUTORS

# contrib/README

# src/Tools/jEdit/README

Tutorials

# prog-prove: Programming and Pro
# locales: Tutorial on Locales

# classes: Tutorial on Type Classes
# datatypes: Tutorial on (Co)datatyp
# functions: Tutorial on Function Def
# corec: Tutorial on Nonprimitively Cc
# codegen: Tutorial on Code Generat
# nitpick: User's Guide to Nitpick

# sledgehammer: User's Guide to Sle
# eisbach: The Eisbach User Manual
# sugar: LaTeX Sugar for Isabelle dor
Reference Manuals

# main: What's in Main

# isar-ref: The Isabelle/Isar Referenc
# implementation: The Isabelle/Isar
# system: The Isabelle System Manu
# jedit: Isabelle/jEdit

Old Manuals

Original jEdit Documentation
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From software to systems

Courtesy http://www.fastcodesign.com
Thanks to Christos Cassandras for recommending this video
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How Amazon \Web Services Uses Formal Methods

By Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, Michael Deardeuff
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Since 2011, engineers at Amazon Web Services (AWS) have used
formal specification and model checking to help solve difficult
design problems in critical systems. Here, we describe our
motivation and experience, what has worked well in our problem
domain, and what has not. When discussing personal experience
we refer to the authors by their initials.

At AWS we strive to build services that are simple for customers
to use. External simplicity is built on a hidden substrate of
complex distributed svstems. Such complex internals are
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