The Science of Software
(a.k.a. Formal Methods)

Stavros Tripakis
Aalto University

What is science?

science => predictions

—
—

Path of Voyager 1

What is the science of software?

 What predictions can we make about the programs
we write?

e Can | predict that my program will:
* Terminate?

Never throw an exception?

Produce the right result?

Always?

Sometimes?

software science # computing science

software science & computer science

What is the mathematics of the
science of software?

* Language
* Truth

Formal (mechanized) logic and proof

— specification and verification

& Isabelle2016-1 - AlgorithmFeedback.thy

File Edit Search Markers Folding View Utiiies Macros Plugins Help

LD@E®0E <l

5¢

2 @& DB Q@

FEIEX & @ |«

ID AlgorithmFeedback.thy (C:\cygwiné4\home\stavros\stavros_svn\syrein\Isabelle\TranslateHBD\)

Hoare (invariant As_init w M (AAs. Suc 0 < length As))
[:As~As'.IBs. Suc 0 < length Bs A (3Cs. perm As (Bs @ Cs) A As'

apply (rule hoare_demonic, safe)

apply (simp add: Sup_less_def)

apply (rule_tac x = "invariant As_init (Suc (length Cs))" in exI, safe)
apply (rule_tac x = "(Suc (length Cs))" in exI, simp_all)

apply (simp add: invariant_def, safe)
by (drule perm_length, simp)

lemma [simpl: "io_distinct As_init = Suc 0 < length As_init —
Hoare (invariant As_init w M (Ms. Suc 0 < length As))
[:As~+As'.JA B Bs. perm As (A # B # Bs) A As' = FB (FB A ;; FB B) # Bs:] (Sup_less (invari
(rule hoare_demonic, safe)
(simp add: Sup_less_def)
(rule_tac x = "invariant As_init (Suc (length Bs))" in exI, safe)
(rule_tac x = "(Suc (length Bs))" in exI, simp_all)
(simp add: invariant_def, safe)
(drule perm_length, simp)

apply
apply
apply
apply
apply
apply
done

theorem CorrectnessTranslateHBD: "io_distinct As_init =— 1length As_init > 1 —
Hoare (io_distinct M (A As . As = As_init)) TranslateHBD () S .
apply (simp add: TranslateHBD_def)
apply (simp add: hoare sedquential)

I
Ellv‘

= FB (Parallel_list Bs) J Cs):1 (Sup_1le

in_out_equiv S (FB (Parallel_list As_init)))"

v

Al

ant As_init) w

[

M|
]

IV Proof state | Auto update Update ISearch: I

Output Query | Sledgehammerl Symbols I

v |100% ~|

=

K —

Examples

src/HOL/ex/Seq.thy

src/HOL/ex/ML.thy

src/HOL/Unix/Unix.thy

src/HOL/Isar_Examples/Drinker.thy
src/Tools/SML/Examples.thy
Release notes

ANNOUNCE

README

® NEWS

COPYRIGHT

CONTRIBUTORS

contrib/README

src/Tools/jEdit/README

Tutorials

prog-prove: Programming and Pro
locales: Tutorial on Locales

classes: Tutorial on Type Classes
datatypes: Tutorial on (Co)datatyp
functions: Tutorial on Function Def
corec: Tutorial on Nonprimitively Cc
codegen: Tutorial on Code Generat
nitpick: User's Guide to Nitpick

sledgehammer: User's Guide to Sle
eisbach: The Eisbach User Manual
sugar: LaTeX Sugar for Isabelle dor
Reference Manuals

main: What's in Main

isar-ref: The Isabelle/Isar Referenc
implementation: The Isabelle/Isar
system: The Isabelle System Manu
jedit: Isabelle/jEdit

Old Manuals

Original jEdit Documentation

||

108y | sess | sprepis onejuswnood | ¢ | &

[
(2]

470,4 (21323/21323)

(isabelle, isabelle,UTF-8-Isabelle) mr o UG 11:45 AM

From software to systems

Courtesy http://www.fastcodesign.com
Thanks to Christos Cassandras for recommending this video

COMMUNICATIONS

OF THE

ACM

Home / Magazine Archive / April 2015 (Vol. 58, No. 4) / How Amazon Web Services Uses Formal Methods / Full Text

HOME | CURRENTISSUE | NEWS | BLOGS | OPINION | RESEARCH PRACTICE

CONTRIBUTED ARTICLES

Search

CAREERS | ARCHIVE Vi

How Amazon \Web Services Uses Formal Methods

By Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, Michael Deardeuff
Communications of the ACM, Vol. 58 No. 4, Pages 66-73

10.1145/2699417

Comments (1)

viewas: B [0 @ D E SHARE = & @ 8 [

Since 2011, engineers at Amazon Web Services (AWS) have used
formal specification and model checking to help solve difficult
design problems in critical systems. Here, we describe our
motivation and experience, what has worked well in our problem
domain, and what has not. When discussing personal experience
we refer to the authors by their initials.

At AWS we strive to build services that are simple for customers
to use. External simplicity is built on a hidden substrate of
complex distributed svstems. Such complex internals are

SIGN IN for Full Access

User Name

Password

» Forgot Password?
» Create an ACM Web Account

SIGN |

ARTICLE CONTENTS:
Introduction

Key Insights
Precise Designs

